Sibling Rivalry in Myxococcus xanthus Is Mediated by Kin Recognition and a Polyploid Prophage.
نویسندگان
چکیده
UNLABELLED Myxobacteria form complex social communities that elicit multicellular behaviors. One such behavior is kin recognition, in which cells identify siblings via their polymorphic TraA cell surface receptor, to transiently fuse outer membranes and exchange their contents. In addition, outer membrane exchange (OME) regulates behaviors, such as inhibition of wild-type Myxococcus xanthus (DK1622) from swarming. Here we monitored the fate of motile cells and surprisingly found they were killed by nonmotile siblings. The kill phenotype required OME (i.e., was TraA dependent). The genetic basis of killing was traced to ancestral strains used to construct DK1622. Specifically, the kill phenotype mapped to a large "polyploid prophage," Mx alpha. Sensitive strains contained a 200-kb deletion that removed two of three Mx alpha units. To explain these results, we suggest that Mx alpha expresses a toxin-antitoxin cassette that uses the OME machinery of M. xanthus to transfer a toxin that makes the population "addicted" to Mx alpha. Thus, siblings that lost Mx alpha units (no immunity) are killed by cells that harbor the element. To test this, an Mx alpha-harboring laboratory strain was engineered (by traA allele swap) to recognize a closely related species, Myxococcus fulvus. As a result, M. fulvus, which lacks Mx alpha, was killed. These TraA-mediated antagonisms provide an explanation for how kin recognition specificity might have evolved in myxobacteria. That is, recognition specificity is determined by polymorphisms in traA, which we hypothesize were selected for because OME with non-kin leads to lethal outcomes. IMPORTANCE The transition from single cell to multicellular life is considered a major evolutionary event. Myxobacteria have successfully made this transition. For example, in response to starvation, individual cells aggregate into multicellular fruiting bodies wherein cells differentiate into spores. To build fruits, cells need to recognize their siblings, and in part, this is mediated by the TraA cell surface receptor. Surprisingly, we report that TraA recognition can also involve sibling killing. We show that killing originates from a prophage-like element that has apparently hijacked the TraA system to deliver a toxin to kin. We hypothesize that this killing system has imposed selective pressures on kin recognition, which in turn has resulted in TraA polymorphisms and hence many different recognition groups.
منابع مشابه
Mechanism of Kin-Discriminatory Demarcation Line Formation between Colonies of Swarming Bacteria.
Swarming bacteria use kin discrimination to preferentially associate with their clonemates for certain cooperative behaviors. Kin discrimination can manifest as an apparent demarcation line (a region lacking cells or with much lower cell density) between antagonist strains swarming toward each other. In contrast, two identical strains merge with no demarcation. Experimental studies suggest cont...
متن کاملSite-specific recombination of temperate Myxococcus xanthus phage Mx8: regulation of integrase activity by reversible, covalent modification.
Temperate Myxococcus xanthus phage Mx8 integrates into the attB locus of the M. xanthus genome. The phage attachment site, attP, is required in cis for integration and lies within the int (integrase) coding sequence. Site-specific integration of Mx8 alters the 3' end of int to generate the modified intX gene, which encodes a less active form of integrase with a different C terminus. The phage-e...
متن کاملSocial Conflict in Centimeter-and Global-Scale Populations of the Bacterium Myxococcus xanthus
Social interactions among microbes that engage in cooperative behaviors are well studied in laboratory contexts [1, 2], but little is known about the scales at which initially cooperative microbes diversify into socially conflicting genotypes in nature. The predatory soil bacterium Myxococcus xanthus responds to starvation by cooperatively forming multicellular fruiting bodies in which a portio...
متن کاملEvolution: Spatial Scaling of Microbial Interactions
Intraspecific incompatibility in the soil bacterium Myxococcus xanthus demonstrates that the social life of microbes is antagonistic on local and global scales. Antagonistic interactions and non-self recognition are likely to promote microbial diversity in local populations.
متن کاملEndemic social diversity within natural kin groups of a cooperative bacterium.
The spatial structure of genetic diversity underlying social variation is a critical determinant of how cooperation and conflict evolve. Here we investigated whether natural social groups of the cooperative soil bacterium Myxococcus xanthus harbor internal genetic and phenotypic variation and thus the potential for social conflict between interacting cells. Ten M. xanthus fruiting bodies isolat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 198 6 شماره
صفحات -
تاریخ انتشار 2016